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ABSTRACT

In 1974 Michael Shub asked the following question [29] : When is the topo-

logical entropy of a continuous mapping of a compact manifold into itself is

estimated from below by the logarithm of the spectral radius of the linear

mapping induced in the cohomologies with real coefficients? This estimate

has been called the Entropy Conjecture (EC). In 1977 the second author

and Micha l Misiurewicz proved [23] that EC holds for all continuous map-

pings of tori. Here we prove EC for all continuous mappings of compact

nilmanifolds. Also generalizations for maps of some solvmanifolds and an-

other proof via Lefschetz and Nielsen numbers, under the assumption the

map is not homotopic to a fixed points free map, are provided.

∗ Research supported by KBN grant no. 2P03A 04522.
∗∗ Research supported by Foundation for Polish Science and by KBN grant no.

2P03A 03425.

Received February 9, 2006 and in revised form June 1, 2006

349



350 W. MARZANTOWICZ AND F. PRZYTYCKI Isr. J. Math.

1. Introduction.

Definition 1.1: For a compact metric space (X , d) a continuous mapping

f : X → X , ǫ > 0, a positive integer n and a set Q ⊂ X

a) Q is called (n, ǫ)-separated if for any two distinct points x, y ∈ Q

max
0≤j≤n

d(f j(x), f j(y)) ≥ ǫ.

b) Put r(f, ǫ) := lim supn→∞
1
n log max{CardQ : Q is an (n, ǫ)-separated

subset of X},

c) The topological entropy h(f) is a nonnegative real number or ∞

defined

h(f) = lim
ǫ→0

r(f, ǫ) = sup
ǫ→0

r(f, ǫ).

Now assume that X is a compact smooth manifold M of dimension m.

Definition 1.2: Let H∗(f) : H∗(M ; R) → H∗(M ; R) be the linear map induced

by f on the cohomology space H∗(M ; R) :=
⊕m

0 H
i(M ; R) of M with real

coefficients.

By sp (f) we denote the spectral radius of H∗(f), which is a homotopy in-

variant by definition.

In 1974 Michael Shub asked, [29, p. 36], the extent to which the following

inequality holds.

(EC) log sp (f) ≤ h(f).

Shub noted that it holds for a set of Cr, r ≥ 1, diffeomorphisms dense in

the C0-topology. From this time the (EC) estimate has been usually called the

Entropy Conjecture, abbr. EC. Roughly speaking, the entropy conjecture is

an estimate from below of a “global” (algebraic) ingredient of the topological

entropy of f , not removable under perturbations of f within its, say, homotopy

class.

Remark that without any additional assumption on M the conjecture is false.

Consider for example the mapping of the sphere S2

f(x, y) =
(

2x(mod2π), π sin(1/2(y + π/2)) − π/2
)

,

where 0 ≤ x ≤ 2π is the longitude and −π/2 ≤ y ≤ π/2 is the altitude on the

2-sphere. Then log sp (f) = log deg(f) = log 2 and the entropy, “concentrated”
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at the set of non-wandering points, the south and north poles, thus is equal to

0. For more details see [29], pp. 37–38.

Next, Anthony Manning proved that h(f) is bounded from below by

log spH1(f), see [20]. It was noticed in [3], [5] and [15] that this lower bound

could be improved to the estimation by the growth of the endomorphism of the

fundamental group of M , induced by f .

In 1977 the second author and Misiurewicz proved [23] that EC holds for all

continuous mappings f on M being tori. Anatole Katok conjectured [15] that

EC holds for all continuous mappings for M being a manifold with the universal

cover homeomorphic to R
m.

To complete this history recall that M. Shub conjectured [29], Conjecture

3a, that EC holds for all C1-mappings on all compact manifolds. The answer

occurred to be positive for all C∞ maps, see [33], and also for all C1 maps if we

consider only the m-dimensional cohomologies, see [22]. In the latter case EC

takes the form log | deg(f)| ≤ h(f).

In this paper we make a first, to the best of our knowledge, progress after 27

years, for continuous maps, going beyond tori, to all nilmanifolds. The methods

in our main proof go back to 1970-ties, [21, 6] and an unpublished version of

[23]. However we need to overcome troubles coused by noncommutativity of

the groups G,Γ, see below, and non-hyperbolicity of H∗(f). For comments on

difficulties in a general situation see Remarks 2.13 and 4.8.

In Section 4, we provide a different proof, via asymptotic Lefschetz and

Nielsen numbers, provided f is not homotopic to a fixed point free map.

We call a discrete subgroup Γ of a Lie group G such that the homogeneous

space Γ is compact a uniform lattice. We shall prove the following.

Theorem 1.3: The estimate (EC) holds for all continuous maps f : M → M

of a compact manifold M which is a quotient of a connected, simply-connected

nilpotent Lie group by a uniform lattice.

Let us discuss the assumptions in this theorem and some related notions. We

include solvmanifolds in the discussion since at some points of the paper the

nilpotency is not needed.

a) A homogeneous space M = G/H of a connected solvable or nilpotent

Lie group G is called a solvmanifold or nilmanifold respectively. If G is

simply-connected and the subgroup H = Γ is discrete M is called a special

solvmanifold (cf., [17, p. 5]).



352 W. MARZANTOWICZ AND F. PRZYTYCKI Isr. J. Math.

For a connected nilpotent Lie group G every compact nilmanifold M = G/H

is special (cf., [8, II Chapter 4, Theorem 1.2]). Therefore Theorem 1.3 concerns

all compact nilmanifolds.

b) A Lie group G is said to be exponential if for any X in its Lie algebra

G the nonzero eigenvalues of the operator ad X are not purely imaginary. Any

exponential Lie group is solvable. Connected, simply-connected exponential Lie

groups are characterized by the fact that the exponential map exp : G → G from

the Lie algebra G to G, is a diffeomorphism (cf., [28], [32, Chapter 2, §5.3]).

c) By endomorphism we mean in this paper a group endomorphism, contin-

uous (hence smooth) in the case of a Lie group, or a Lie algebra endomorphism.

A Lie group G is said to be of type (R), from real, if for any X in its Lie

algebra G all the eigenvalues of the operator ad X are real. For any Lie group

G of type (R) and a uniform lattice Γ ⊂ G any endomorphism of Γ extends to

an endomorphism of G (cf. [28], [32, Chapter 2, §5.3]). Let us call the latter

property rigidity. Since in a nilpotent Lie algebra G for every X the operator

ad X is nilpotent, a nilpotent Lie group is of type (R).

d) Every solvmanifold M = G/H , such that G is exponential or of type

(R) is called an exponential solvmanifold or solvmanifold of type (R)

respectively.

e) The nilradical N in a Lie algebra G is its maximal nilpotent ideal. The nil-

radical N in a Lie group G is its maximal connected nilpotent normal subgroup.

If G is the Lie algebra of G, then N = expN .

Note finally that, even without assuming that G is exponential, every con-

nected simply-connected solvable Lie group is homeomorphic to Rm, thus con-

tractible, (cf., [26] Introduction 1.9). So a special solvmanifold M = G/Γ is a

K(π, 1) space (cf., [31]) with the fundamental group Γ. Consequently the set of

free homotopy classes of self maps is in one to one correspondence with the set

of conjugacy classes of endomorphisms of Γ, [31, Chapter 8.1, Theorem 11].

The assumption that G is of type (R), hence the rigidity, allows to find in

the free homotopy class [f ] of a continuous mapping f : M → M , a mapping

φf whose lift to G is an endomorphism Φf , extending an endomorphism of Γ

in the conjugacy class corresponding to [f ].

We call Φf an endomorphism associated to f . (Note that Φf and φf can

exist for particular f even in absence of the rigidity property.)
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The proof of Theorem 1.3 extends easily (see Remark 2.12) to the proof of

the following

Theorem 1.4: The estimate (EC) holds for all continuous maps f : M → M

of a compact solvmanifold of type (R) M = G/Γ with G connected, simply-

connected and Γ a uniform lattice, provided the images of sufficiently high

iterates of the endomorphism Φf : G→ G are contained in the nilradical of G.

The proof of Theorem 1.3 in Section 2 has two steps. We denote by

∧

DΦf (e) :=
m

⊕

l=0

∧l
DΦf (e)

a linear operator induced by DΦf (e) in the exterior algebra
∧∗

(Rm) =
⊕m

l=0

∧l
Rm of G considered as the linear space Rm.

It is useful to note a standard fact that

(1) log sp
(

∧

DΦf (e)
)

= log
∏

j

|λj |

the product over all eigenvalues of DΦf (e) counted with multiplicities,

of absolute value greater than 1 provided that sp (DΦf (e)) > 1. The case

sp (DΦf (e)) ≤ 1 leads to the obvious inequality h(f) ≥ 0 and we will not

discuss it.

In the first step we use a direct argument (Theorem 2.1) to show that

(2) log sp (f) ≤ log sp
(

∧

DΦf (e)
)

.

In the second step, the main one, we prove that for such a map we have the

estimate

(3) log sp
(

∧

DΦf (e)
)

≤ h(f).

A hardest technical point, Lemma 2.7, is moved to Section 3. We substan-

tially use the nilpotency there, exploring tha assumption that G is “almost

commutative”.

In Section 4, we point out that (2) can be obtained in different ways. For a

continuous self-map of a compact special solvmanifold the inequality sp (f) ≤

sp
(
∧

DΦf (e)
)

is a direct consequence of the Nomizu and Hattori theorem [24]

identifying H∗(M ; R) with the cohomology of the Lie algebra G. Another way

is to identify sp (DΦf (e)) with the spectrum of an integer matrix Af called
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linearization of f , assigned to f via the descending central tower of ideals of the

nilradical of G, [17].

Recall that the descending central tower of ideals in a nilpotent Lie algebra

N is the sequence

(4) {0} = Gk ⊳ Gk−1 ⊳ Gk−2 ⊳ · · · ⊳ G1 ⊳ G0 = N ,

where Gj = [N ,Gj−1]. Analogously, the descending central tower of normal

subgroups in a nilpotent Lie group N whose Lie algebra is N is the sequence

{Gj = exp(Gj), j = k, . . . , 0}.

Next, in Section 4, we show how (3) Theorem 1.3, can be obtained via Lef-

schetz and Nielsen asymptotic numbers, provided that f : M → M is not

homotopic to a fixed point free map, referring to [4], [1], [17] and [12]. In

conclusion we obtain

Theorem 1.5: The estimate (EC) holds for any continuous map f : M → M

of a special solvmanifolds of type (R) which is not homotopic to a fixed point

free map.

At the end of Section 4 we give other comments and final remarks.

Acknowledgements. The authors are grateful to Anthony Manning for a

discussion of the topic and pointing their attention to [7] and [9].

2. Proof of Theorem 1.3.

To prove the estimate (2) we use the following theorem.

Theorem 2.1: Let M = G/Γ be a compact homogeneous space of a connected

Lie group G by a uniform lattice Γ, and φ : M → M the factor map induced

by an endomorphism Φ : G→ G preserving Γ. Then

log sp (φ) ≤ log sp
(

∧

DΦ(e)
)

.

Proof. We shall use de Rham cohomologies. Fix a right invariant Riemannian

metric 〈·, ·〉 on G, i.e., a metric such that every differential Dg of the right

multiplication h 7→ hg is an isometry. Such a metric can defined starting from

an arbitrary scalar product 〈·, ·〉 on G = TeG by 〈w1, w2〉Tg
:= 〈v1, v2〉Te

for

w1 = Dg(v1), w2 = Dg(v2) ∈ TgG. By the right invariance this metric induces

a Riemannian metric on M = G/Γ. This metric induces a metric and thus a
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norm on each fiber of the exterior power
∧j TgG and consequently on

∧j TxM ,

x ∈ M , (just the volume of the parallelopiped v1 ∧ · · · ∧ vj) and on the fibers

of dual bundles
∧j

T ∗
gG, and

∧j
T ∗

xM respectively. A norm ‖ ‖Tx
in

∧j
T ∗

xM

gives a norm of any differential j-form ν defined as ‖ν‖ := supx∈M ‖ν(x)‖.

Every differentiable map ψ : M → M induces a linear map of the spaces of

differentiable forms, denoted by
∧

(Dψ)∗. Note that for any closed continuous

differential form j-form η on M and every n ∈ N we have

‖
∧

(Dψn)∗(η)‖

= sup

{

(|η(Dψn(v1) ∧ · · · ∧Dψn(vj))| :
x ∈M, v1, · · · , vj ∈ TxM,

‖v1 ∧ · · · ∧ vj‖ = 1

}

≤ ‖η‖ · sup

{

‖Dψn(v1) ∧ · · · ∧Dψn(vj)‖ :
x ∈M, v1, · · · , vj ∈ TxM,

‖v1 ∧ · · · ∧ vj‖ = 1

}

.

For any closed j-form η and its cohomology class [η] one defines the norm

‖[η]‖ := inf{‖ν‖ : ν ∈ [η]} (cf., [10]).

For φ : M →M being the factor to M of an endomorphism Φ of G we have

(5) log sp (φ) ≤ sup
j

lim
n→∞

sup
x∈M

1

n
log

∥

∥

∥

∧j
D(φn)(x)

∥

∥

∥
= log sp

(

∧

DΦ(e)
)

.

The first inequality of (5) is a consequence of the above considerations and

definitions, and the definition of spectral radius of a map (Def. 1.2). The latter

equality of (5) follows from the fact that ‖
∧j

D(φn)(x)‖ does not depend on

x. Indeed, for any h ∈ G denote by H1, and H2 the right multiplications by h,

and Φ(h) respectively. From the equality Φ(x) = Φ(xh−1)Φ(h) it follows that

‖DΦ(h)‖ = ‖DH2 ◦DΦ(e) ◦DH−1
1 (h)‖ = ‖DΦ(e)‖ ,

since H1 and H2 are isometries by our definition of the Riemannian metric. The

same holds for exterior powers and iterates of φ.

Proof of the estimate (2). Since the spectral radius is a homotopy invariant, the

supposition follows from Theorem 2.1.

The rest of Section 2 (and Section 3) will be devoted to the estimate 3.

Namely we shall prove the following



356 W. MARZANTOWICZ AND F. PRZYTYCKI Isr. J. Math.

Theorem 2.2: For a continuous map f : M → M for a compact nilmanifold

M = G/Γ and an endomorphism Φf : G→ G associated to f

log sp
(

∧

DΦf (e)
)

≤ h(f) .

For a given endomorphism Φ : G → G of a Lie group G denote by Es,

Ec, Ecs, Eu, Ecu the linear subspaces of its Lie algebra TeG = G being the

direct sums of generalized eigenspaces (related to Jordan cells) corresponding

to eigenvalues of DΦ(e) with absolute values smaller than 1, equal to 1, not

exceeding 1, larger than 1, larger and equal to 1. The superscripts s, c, cs, u,

and cu abbreviate: stable, central central-stable, unstable and central-

unstable respectively. Let E0 denote the generalized eigenspace corresponding

to 0. By definition E0 ⊂ Es. Let also E+ be a linear subspace corresponding

to all nonzero eigenvalues i.e. E0 ⊕E+ = G. Sometimes if we have in mind any

of s, c, cs, u, cu, 0,+ we write #. Finally it is substantial to note that DΦ(e) is

a Lie algebra endomorphism. As a direct consequence of these definitions we

get the following.

Proposition 2.3: For an endomorphism Φ of a Lie group G, the subspaces

Es, Ec, Ecs, Eu, Ecu of its Lie algebra G, are Lie subalgebras of G, and E0 is an

ideal. All of them are preserved by the endomorphisms DΦ(e). Furthermore,

Es is an ideal in Ecs and Eu in Ecu respectively.

Proof. To shorten notation we put D := DΦ(e). Note that

E0 = {X ∈ G : ∃n ∈ N, Dn(X) = 0}.

So, for X ∈ E0, Y ∈ G, we have Dn([X,Y ]) = [DnX,DnY ] = [0, DnY ] = 0.

So E0 is an ideal. More generally, writing Eλ for the direct sum of the kernels

of large powers of D − λI and D− λ̄I (the subspace spanned by the subspaces

corresponding to all the Jordan cells of λ, λ̄) we can easily prove that [Eλ, Eµ] ⊂

Eλµ, see [2, Exercise §4 21a]. This implies by the definition that all E# are

subalgebras, as direct sums of the appropriate Eλs, since if Eλ, Eµ ⊂ E#, then

Eλµ ⊂ E#. Finally Es is an ideal in Ecs since |λ| < 1, |µ| ≤ 1 implies |λµ| < 1.

Analogously we prove that Eu is an ideal in Ecu.
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Note that we can write a dynamical characterization of the subspaces E#.

For example denoting the isomorphism D|E+ by D̃ we can write

Es = {X ∈ G : lim sup
n→∞

n
√

‖Dn(X)‖ < 1},

Ec = {X ∈ E+ : lim
n→±∞

|n|

√

‖D̃n(X)‖ = 1},

Eu = {X ∈ E+ : lim sup
n→∞

n

√

‖D̃−n(X)‖ < 1}.

So, for example,

‖Dn[X,Y ]‖ = ‖[DnX,DnY ]‖ ≤ Cλn‖X‖ · ‖Y ‖

for an arbitrary λ between max{|ν| : |ν| < 1, ν ∈ σ(D)} and 1, a constant C > 0

and all n ≥ 0, implies that if X ∈ Es, Y ∈ Ecs, then [X,Y ] ∈ Es.

Consider G# = expE# for # = 0, s, cs, s, u, cu,+, Lie subgroups of G. By

E0 being an ideal, G0 is normal (but the other are usually not normal in G).

Also, Gu is normal in Gcu. We will be interested in the foliations W s, W c

and W cs being the decompositions of G into the quotiens Gsg, Gcg and Gcsg.

Esg, Ecg, Ecsg are subbundles tangent to these foliations respectively. (For-

mally we act on E# with a differential of the right multiplication by g, we shall

use however a simplified notation E#g.)

Proposition 2.4: For an endomorphism Φ of a Lie groupG which is connected,

simply-connected and exponential,

Gsg = {h ∈ G : lim sup
n→∞

n
√

ρ(Φn(g),Φn(h)) ≤ λs},(6)

Gug = {h ∈ G+ : lim sup
n→∞

n

√

ρ(Φ̃−n(g), Φ̃−n(h)) ≤ 1/λu},(7)

where λs is the spectral radius of D|Es , 1/λu is the spectral radius of (D̃|Eu)−1,

Φ̃ = Φ|G+ , and

(8) Gcsg = {h ∈ G : lim sup
n→∞

n
√

ρ(Φn(g),Φn(h)) ≤ 1}.

Proof. The inclusion ⊂ in (6) follows from

ρ(Φn(g),Φn(h)) =

∫ 1

0

‖DΦn(X)(exp tX)‖ dt,

where hg−1 = expX , i.e. (exp tX)g, 0 ≤ t ≤ 1 is a geodesic γ, joining g to h,

and from Es = {lim supn→∞
n
√

‖Dn(X)‖ ≤ λs}.



358 W. MARZANTOWICZ AND F. PRZYTYCKI Isr. J. Math.

To prove the opposite inclusion (which we do not need in this paper, so we

only sketch the proof) write any x ∈ G as x = g1g2g for g1 ∈ Gcu, g2 ∈ Gs,

see the notation and comments preceding Lemma 2.6. Then ρ(Φn(x),Φn(g)) ≥

ρ(Φn(x),Φn(g2g))−ρ(Φn(g2g),Φ
n(g)). The latter term decays exponentially to

0, by (6). Meanwhile, if g1 6= e, ρ(Φn(x),Φn(g2g)) =
∫ 1

0
‖DΦn(X)(exp tX)‖dt ≥

Const ξn, where g1 = expX and X ∈ Ecu \ {0}, and ξ is arbitrarily close to 1.

The path γ = exp tX, 0 ≤ t ≤ 1 is the shortest one joining g2g to x, since there

is only one geodesic (one-parameter group) joining e to g1 since the group is

exponential. The proofs of (7) and (8) are similar.

The plan of the proof of Theorem 2.2. For a given continuous map

f : M → M of a compact nilmanifold M = G/Γ let f̃ : G → G be a lift of f

such that Φ = Φf , an endomorphism associated to f , and f̃ are joined by a lift

to G of a homotopy between φf and f . We say that the lift f̃ corresponds

to Φf . To each f̃ -trajectory in G we assign a Φ-trajectory in Gu. Next we

verify that (n, ǫ)-separated points (trajectories) for Φ in Gu will be assigned to

(n, ǫ′)-separated points for f̃ and after projection to M = G/Γ, for f .

This assignments will be done in 3 steps: first mapping by τcu : G → Gcu

next by τu : Gcu → Gu along quotients (leaves) of the foliations W s and

W c, respectively, and finally by shadowing of ǫn-Φ-trajectories in Gu by Φ-

trajectories. Here ǫn will be sub-exponentially increasing and xn is called ǫn-

Φ-trajectory if ρ(Φ(xn), xn+1) ≤ ǫn.

We start with some general standard facts concerning nilpotent Lie groups.

Denote a default right invariant Riemannian metric 〈·, ·〉 on G introduced

above by ω. The metric on G induced by any Riemannian right invariant metric

ν will be denoted by ρν , the distance from unity ρν(g, e) by rν(g) and the norm

of v ∈ TgG by ‖v‖ν. We have ‖[X,Y ]‖ν ≤ Cν‖X‖ν‖Y ‖ν for a constant Cν and

all X,Y ∈ G. For ν = ω we omit the index ω.

Note that if g ∈ G1 is a Lie subgroup of G, then rν(g) in G and in the metric

restricted to G1 coincide, so there is no ambiguity of the notation (see the end

of proof of Proposition 2.4).

Lemma 2.5: Let G be a connected simple connected nilpotent Lie group of

descending central tower of ideals in its Lie algebra of length k and let r denote

the distance from e, as above. Then, for all g, h ∈ G

r(g−1hg) ≤ Cr(h)(1 + r(g) + · · · +
1

(k − 1)!
r(g)k−1).
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Proof.

(9)

r(g−1hg) =

∫ 1

0

‖(ead ĝ ĥ)(g−1(exp tĥ)g)‖dt

≤ C‖ĥ‖ (1 + ‖ĝ‖ + · · · +
1

(k − 1)!
‖ĝ||k−1),

where h = exp ĥ, g = exp ĝ. In the equality the identity ead ĝ ĥ = Adgĥ is used.

The last inequality follows from the formula ead ĝ =
∑∞

j=0
1
j(ad ĝ)

j and from

the nilpotency.

If G1, G2 are Lie subgroups of G such that dimG1 + dimG2 = m = dimG,

G1 ∩ G2 = {e}, for g = g1g2, g1 ∈ G1, g2 ∈ G2 we define “projections” τi to

Gi, i = 1, 2 by τi(g) = gi. Note that g2 = τ2(g) = g−1
1 g is the intersection

point of the quotient (leaf) G1g with G2. If G1, G2 are Lie subalgebras of a

nilpotent (or exponential) Lie algebra G and G1 ⊕ G2 = G, G1 ∩ G2 = {0} then

G1 = exp(G1), G2 = exp(G2) satisfy the above conditions, every g ∈ G is of the

form g1g2 and τi are continuous ([26] Preliminaries 1.9).

Let µ denote a modulus of continuity of these functions, namely consider

µi(r) := sup
g:r(g)≤r

r(gi) and µ(r) := max{µ1(r), µ2(r)}.

Lemma 2.6: For any g, g′ ∈ G

(10) ρ(τ2(g), τ2(g
′)) ≤

µ
(

Cµ(ρ(g, g′))(1 + r(τ1(g)) + · · · +
1

(k − 1)!
r(τ1(g))

k−1)
)

.

If G2 is a normal subgroup, then

(11) ρ(τ1(g), τ1(g
′)) ≤ µ(ρ(g, g′)),

and

(12) ρ(τ2(g), τ2(g
′)) ≤ Cµ(ρ(g, g′))(1 + r(τ1(g)) + · · · +

1

(k − 1)!
r(τ1(g))

k−1).

Proof. Let g = g1g2, g
′ = h1h2g, where h1, g1 ∈ G1, h2, g2 ∈ G2. Then

ρ(g, g′) = r(h1h2). We have

(13) g′ = h1h2g1g2 = h1g1(g
−1
1 h2g1)g2 ,
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We write g−1
1 h2g1 = k1k2 for ki ∈ Gi, i = 1, 2 so we can write τ2(g

′) = k2g2.

Finally, note that ρ(τ2(g), τ2(g
′)) = r(k2) and using r(k2) ≤ µ(r(g−1

1 h2g1)) and

applying (9) in Lemma 2.5, we obtain (10).

To prove (11) note that, by the normality ofG2, g
−1
1 h2g1 ∈ G2, hence τ1(g

′) =

h1g1 Since τ1(g) = g1 we get ρ(τ1(g), τ1(g
′)) = r(h1) ≤ µ(ρ(g, g′)).

(12) follows directly from (9) since, due to the normality of G2, we have

k2 = g−1
1 h2g1.

Now we return to the dynamical subgroups.

Lemma 2.7 (Projection to Gcu): For every ǫ, ǫ1 > 0 there exist ∆1, ∆2 > 0 such

that for every ǫ-Φ-trajectory xn ∈ G, n = 0, 1, . . . (that is ρ(Φ(xn), xn+1) ≤ ǫ),

for the pair of groups G1 = Gs, G2 = Gcu , and respective projections τ1 = τs

and τ2 = τcu, if r(τ1(x0)) ≤ ǫ1, then

(14) r(τ1(xn)) ≤ ∆1 ,

and

(15) τ2(xn) is a ∆2 − Φ − trajectory in Gcu.

This is the hardest part of the proof of Theorem, sinceGcu need not be normal

in G and we have a trouble with (11). We postpone the proof of it. Note that if

Gcu were normal, then for xn+1 = hΦ(xn) the condition r(h) ≤ ǫ would imply

by (11) that ρ(τ1(xn+1), τ1(Φ(xn))) ≤ µ(ǫ) hence, roughly, r(τ1(xn+1) ≤ µ(ǫ)+

λsr(τ1(xn)), where λs < 1 is the weakest contraction rate in Gs. The latter is

less than r(τ1(xn)) provided µ(ǫ) < (1 − λs)r(τ1(xn)). So r(τ1(xn)) < ∆1 for

all n by induction, provided µ(ǫ) < (1 − λs)∆1 and r(τ1(x0)) ≤ ∆1. The final

step, that (14) yields (15), is immediate from (10); the normality is not used.

Lemma 2.8 (Projection to Gu): Consider τ1 = τc and τ2 = τu for the pair of

groups G1 = Gc and G2 = Gu in Gcu. Then for every ǫ′, ǫ′1 > 0 and ξ > 1,

there exists C ≥ 1 such that for every ǫ′-Φ-trajectory xn ∈ Gcu, n = 0, 1, . . .

such that r(τ1(x0)) ≤ ǫ′1, we have

(16) r(τ1(xn)) ≤ Cξn

and

(17) ρ(τ2(xn+1),Φ(τ2(xn))) ≤ Cξn.
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Proof. By the definition of Ec there exists C(ξ) > 0 such that for every

n = 0, 1, . . ., ‖DΦn|Ec(e)‖ ≤ C(ξ)ξn. By (11) in Lemma 2.6, for g = Φ(xn),

g′ = xn+1 we obtain ρ(τ1(Φ(xn)), τ1(xn+1)) ≤ µ(ǫ′), hence r(τ1(xn+1)) ≤

r(Φ(τ1(xn)) + µ(ǫ′). Composing this for n = 1, 2, . . . we get, with the use

of (8) in Proposition 2.4,

r(τ1(xn)) ≤ C(ξ)ξnr(τ1(x0)) +

n−1
∑

j=0

C(ξ)ξjµ(ǫ′) ≤ C(ξ)ǫ′1ξ
n + C(ξ)µ(ǫ′)

ξn − 1

ξ − 1

≤
(

C(ξ)ǫ′1 + C(ξ)µ(ǫ′)
1

ξ − 1

)

ξn ,

which proves (16) with C defined by the expression in the parentheses. (17)

follows from (12). First we get the estimate by Cξkn with a new C, but k does

not appear at the end if we start with ξ1/k.

Remark 2.9: With a slightly more effort we could prove that the growths in

(16) and (17) are polynomial. However we shall not use it in the sequel.

Proposition 2.10: Let f : M → M be a map of a compact nilmanifold

M = G/Γ, f̃ : G → G its lift corresponding to Φ = Φf : G → G an associated

endomorphism. Then there exists a continuous map θ : G → Gu which is

“onto”, moreover θ|Gu is onto Gu, and such that

(18) θ ◦ f̃ = Φ ◦ θ.

Moreover, for every ξ > 1 there exists C ≥ 1 such that for all x ∈ Gu, n ∈ N,

xn = f̃n(x)

(19) ρ(τuτcu(xn), θ(xn)) ≤ Cξn .

Proof. Since f̃ corresponds to Φ, namely, f̃ and Φf are joined by a lift of a

homotopy between f and φf on M , their distance is bounded by a constant ǫ.

We construct θ : G → Gu as follows. Let x ∈ G. Then the f̃ -trajectory xn is

an ǫ-Φ-trajectory. Hence by Lemmas 2.7 and 2.8 yn = τuτcu(xn) is an ǫn-Φ-

trajectory in Gu with ǫn = Cξn, with C = C(x) depending on r(τ1(x)) in the

decompositionG = GsGcu and r(τ1(τ
cu(x))) in the decompositionGcu = GcGu,

and on ǫ. Note that by Lemmas 2.7 and 2.8 C(x) can be chosen to depend on

each of these 3 variables in a monotone way. In consequence C(x) is locally

bounded.
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We “shadow” this ǫn-Φ-trajectory by a Φ-trajectory zn in Gu given by the

formula

(20) zn = lim
j→∞

(Φ|Gu)−j(yn+j) .

Note that, for λ an arbitrary constant such that 1 < λ < λu infimum of the

absolute values of the eigenvalues ofDΦ(e) larger than 1, (see (7)) for a constant

Cλ, writing Φ̃ := Φ|Gu , we get, provided ξ < λ,

ρ(yn, zn) ≤
∞
∑

j=0

ρ(Φ̃−j(yn+j), Φ̃
−(j+1)(yn+j+1))(21)

≤
∞
∑

j=0

Cλλ
−(j+1)ρ(Φ(yn+j), yn+j+1)

≤
∞
∑

j=0

Cλλ
−(j+1)ǫn+j

≤ C(x)Cλξ
n 1

1 − λ−1ξ
.

Observe that Φ(zn) = zn+1 follows immediately from the definition (20).

Define θ(x) = z. Note that θ(xn) = zn, since the definition of θ(xn) is just zn

given by (20) with f̃ -trajectory starting at xn. So (18) holds. The continuity

of θ follows from the continuity of τcu and τu resulting from (10) and (12),

and from the local boundedness of C(x), and therefore from the local uniform

convergence of z0 = θ(x) = limj→∞ Φ̃−jτuτcuf̃ j(x) in (20).

For x ∈ Gu we have C(x) bounded by a constant C(ǫ) depending only on ǫ,

and τuτcu(x) = x. Hence ρ(θ(x), x) is bounded, by C(ǫ)Cλ
1

1−λ−1ξ . Therefore,

by the continuity, θ maps G and even Gu, onto Gu, by topological reasons.

Indeed, for any y and the ball B(e, r) of sufficiently large radius r the map

θ : ∂B(e, r) → Gu \ {y} is homotopic in Gu \ {y} to the identity on ∂B(e, r). If

θ onB(e, r) omitted y, the homotopy would extend to B(x, r) yielding retraction

of clB(e, r) to it boundary. Consequently for any y the equation θ(x) = y has

a solution. Finally (19) holds with C = C(ǫ)Cλ
1

1−λ−1ξ .

Proof of Theorem 2.2, i.e. inequality (3). Since f̃ is a lift of f on a compact

M , it is uniformly continuous, hence it has a modulus of continuity function.

Denote it by µf̃ . Set

a = inf{ρ(xg, x) : g ∈ Γ \ {e}, x ∈ G} .
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Since the right invariant metric ρ need not be left invariant, a can be

less than inf{ρ(g, e) : g ∈ Γ \ {e}}. Fortunately a > 0 since G → G/Γ is a

covering map. (Here is a formal proof: x = yh where h ∈ Γ and ρ(y, e) ≤

diamM , the diameter in ρ. Hence ρ(xg, x) = ρ(yhg, yh) = ρ(yhgh−1y−1, e), so

a ≥ inf{ρ(yky−1, e) : k ∈ Γ \ {e}, ρ(y, e) ≤ diamM}. It is nonzero because only

a finite number of k’s count in the infimum. If for example ρ(yky−1, e) ≤ 1 then

for h = yky−1 we have k = y−1hy so ρ(k, e) ≤ 2diamM + 1.)

Choose δ > 0 such that

δ + µf̃ (δ) < a .

There exists p ∈ Gu such that U := θ(B(p, δ/2)) has nonempty interior in

Gu by the Baire Theorem. Indeed, we cover Gu by a countable number of balls

Bj = B(gj , δ/2) and if every θ(Bj) have empty interior then
⋃

j θ(Bj) is of the

first category, what contradicts the property that θ|Gu maps onto Gu. (In the

sequel it is sufficient to know that vol (U) > 0.)

For each ξ > 1 and n large enough, there exists for Φ an (n, ξ2n)-separated

set Sn ⊂ U such that

(22) ♯Sn ≥ vol (U)2−u ξ−2nu
u

∏

j=1

|λj |
n ,

where u is the dimension of Eu and λj are all the eigenvalues of DΦ(e) of

absolute value larger than 1, each counted with its multiplicity. This can be

seen by a volume argument. Indeed in the invariant measure (volume) induced

by our Riemannian metric

vol (Φn(U)) = Jacobian(Φn|U )vol (U) ≥ vol (U)

u
∏

j=1

|λj |
n .

Let A be a maximal ξ2n-separated subset of Φn(U) (that is ρ(x, y) ≥ ξ2n for

all distinct x, y ∈ A). Then, by the maximality of A,
⋃

x∈AB(x, ξ2n) ⊃ Φn(U).

Hence
∑

x∈A

volB(x, ξ2n) ≥ vol (U)

u
∏

j=1

|λj |
n .

Finally, apply

volB(x, ξ2n) = volB(e, ξ2n) = Const ξ2nu ,

where Const ≤ 2u is the volume of the unit ball in the Lie algebra Eu. The first

equality holds since the metric is right invariant. The second equality holds since
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exp(B(0, r)) = B(e, r) (a standard fact) and therefore we have volB(e, r) =
∫

B(0,r)
Jacobian(exp(X))dX . But for X ∈ G, D(exp)(X) =

∑∞
i=0

(−1)i

(i+1)! (ad X)i

(cf., [8] Part I., Chapter 2.3.3) and consequently detD(exp)(X) = 1, because

ad X is nilpotent. Now we conclude the proof of (22), where we set Sn =

Φ̃−n(A).

For each x ∈ Sn we choose an arbitrary x′ ∈ θ−1(x) ∩ B(p, δ/2) in Gu. We

shall prove that the set {x′Γ ∈M : x ∈ Sn} is (n, δ)-separated for f .

Suppose to the contrary that there exist x, y ∈ Sn with x 6= y, such that

for x′, y′ as above ρ(fk(x′Γ), fk(y′Γ)) < δ for all l = 0, . . . , n. We prove by

induction that ρ(f̃ l(x′), f̃ l(y′)) < δ. First note that ρ(x′, y′) < δ by definition

(both points belong to B(p, δ/2)). Suppose we know that ρ(f̃ l(x′), f̃ l(y′)) < δ

for an integer l < n. Then ρ(f̃ l+1(x′), f̃ l+1(y′)) < µf̃ (δ). By our supposition

there exists h ∈ Γ such that

ρ(f̃ l+1(x′), f̃ l+1(y′)h) = ρ(f l+1(x′Γ), f l+1(y′Γ)) < δ .

So, ρ(f̃ l+1(y′), f̃ l+1(y′)h) ≤ δ + µf̃ (δ) < a, hence h = e by the definition of a.

In consequence ρ(f̃ l+1(x′), f̃ l+1(y′)) < δ. The induction procedure is finished.

Now let us apply θ. We argue as at the beginning of Proof of Proposition

2.10. By (14) in Lemma 2.7 r(τs(f̃n(x′)) ≤ ∆1 (and the same for y′), with ∆1

depending on ǫ = sup ρ(f̃ ,Φ) and ǫ1 = 0. Hence by (10) in Lemma 2.6

ρ(τcuf̃n(x′), τcuf̃n(y′)) ≤ δ′ := µ(Cµ(δ)(1 + r(∆1) + · · · +
1

(k − 1)!
r(∆1)

k−1)).

Next, by (16) in Lemma 2.8, for ξ replaced by ξ1 := ξ1/k

τcτcuf̃n(x′) ≤ Cξn
1

and the same for y′, for C depending on ξ1, ǫ
′ = ∆2 and ǫ′1 = 0. So, by Lemma

2.6 (12)

ρ(τuτcuf̃n(x′), τuτcuf̃n(y′)) ≤ Cµ(δ′)(1 + Cξn
1 + · · · +

1

(k − 1)!
(Cξn

1 )k−1)

≤ Const ξnk
1 .

By (19) in Proposition 2.10,

ρ(τuτcuf̃n(x′),Φn(x)) ≤ Cξn and ρ(τuτcuf̃n(y′),Φn(y)) ≤ Cξn .

Hence ρ(Φn(x),Φn(y)) ≤ Const ξn. This contradicts ρ(Φn(x),Φn(y)) ≥ ξ2n,

see the definitions of A and Sn.
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Note finally that log
∏u

j=1 |λj | = log sp (∧DΦ(e)), compare (1) in Introduc-

tion. Hence, passing with n to ∞ we get from (22) the estimate

log sp (∧DΦf (e)) ≤ h(f) + 2u log ξ.

Letting in the construction ξ ց 1, we conclude the proof of the Theorem 2.2,

hence the proof of Theorem 1.3.

Remark 2.11: We expect that Theorem 1.3 holds for G exponential solvable. A

natural additional assumption would be that Ec is contained in the nilradical

N . Under this assumption however, assuming also that Φ is an automorphism,

G must be nilpotent! See S. Smale [30, Proposition 3.6] and N. Bourbaki [2]

Exercise §4 21b for the hyperbolic and more general — no roots of unity —

case, and Exercise 11 to deal with the Ec ⊂ N case.

Remark 2.12 (Proof of Theorem 1.4): In the case Ec ⊂ N and Φ is an endo-

morphism, but not an automorphism, G need not be a nilmanifold. However

Entropy Conjecture holds, provided G is of type (R). Split G into a subspace

E0 corresponding to the eigenvalue 0 for DΦ(e) and to the subspace E+ corre-

sponding to all other eigenvalues, see the definitions preceding Proposition 2.3.

Note that by Remark 2.11 E+ ⊂ N , thus we are in the situation of Theorem

1.4.

To prove Theorem 1.4 recall that by Proposition 2.3 E0 is an ideal. Project

first by τ+ to the group G+ = expE+, in the decomposition G = G1G2 for

G1 = G0 = expE0 and G2 = G+. For an f̃ -trajectory xn being an ǫ-Φ-

trajectory, we write xn+1 = h1h2g1g2 for Φ(xn) = g1g2. In our convention,

all the elements of G written with index 1 belong to G1, and written with

index 2 belong to G2. By the normality of G0 we can write xn+1 = h1g
′
1h2g2,

hence ρ(τ+(xn+1,Φ(τ+(xn)) = r(h2) ≤ µ(ρ(xn+1,Φ(xn))) ≤ µ(ǫ). Since E+ is

contained in the nilradical, i.e., E+, G+ are nilpotent we can proceed next as

in Proof of Theorem 2.2. We project by τcu and τu and shadow, as before.

Remark 2.13: The proof given here has followed the procedure applied for

M = Tm in [21] and in an early (unpublished) version of [23] by M. Misiurewicz.

It has been crucial that θ(G) has nonempty interior, or at least nonzero mea-

sure induced by the Riemann metric restricted to Wu(e). For a more detailed

discussion see Remark 4.8.
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3. Proof of Lemma 2.7.

1. The metrics. All Gj in the descending central tower of ideals, see (4) in

the Introduction, are Φ-invariant, hence each Gj , j = 0, . . . , k − 1 is spanned

by Es ∩ Gj and Ecu ∩ Gj . Therefore, for each j, one can choose subspaces

Es
j ⊂ ((Gj \ Gj+1) ∪ {0}) ∩ Es and Ecu

j ⊂ ((Gj \ Gj+1) ∪ {0}) ∩ Ecu spanning,

together with Gj+1, the space Gj . We assume about our Riemannian metric ω

that all Es
j and Ecu

i are pairwise orthogonal.

For an arbitrary a : 0 < a < 1 we shall consider also the metric ωa preserving

the spaces Es
j and Ecu

i orthogonal, but multiplying ω on each Ĝj := Es
j ⊕ Ecu

j

by a2
j , where aj := a3j

.

Note that

(23) ‖[X,Y ]‖a ≤ aCω‖X‖a‖Y ‖a ,

where we simplify the indexing by replacing ωa by a.

Indeed, writing X =
∑k−1

j=0 Xj, Y =
∑k−1

j=0 Yj where Xj , Yj ∈ Ĝj , we get

‖[X,Y ]‖a ≤
∑

s,t

‖[Xs, Yt]‖a ≤
∑

s,t

au(s,t)‖[Xs, Yt]‖ ,

where u = u(s, t) > max{s, t} denote the minimal integer such that [Xs, Yt] ⊂

Gu. Continuing, we get

‖[X,Y ]‖a ≤
∑

s,t

auCω‖Xs‖‖Yt‖ =
∑

s,t

auCωa
−1
s ‖Xs‖aa

−1
t ‖Yt‖a

≤ aCω

∑

s,t

‖Xs‖a‖Yt‖a

≤ aCωk
2 sup

s
‖Xs‖a sup

t
‖Yt‖a

≤ aCωk
2‖X‖a‖Y ‖a.

Summarizing

‖[X,Y ]‖a ≤ Ca‖X‖a‖Y ‖a, with Ca = ak2Cω

arbitrarily small when a is small appropriately. Remark that we can always get

C arbitrarily small by multiplying a Riemannian metric by a large constant.

Here, however, we achieved C small not by just increasing the metric. Namely,

here

ωa ≤ ω .

The constant a will depend on ǫ, as will be specified later on.



Vol. 165, 2008 ENTROPY CONJECTURE OF NILMANIFOLDS 367

2. The strategy. For an ǫ-Φ-trajectory xn we have xn+1 = h1h2Φ(xn) for

h1 ∈ Gs, h2 ∈ Gcu with ra(hi) ≤ r(hi) ≤ µ(ǫ).

Write Φ(xn) = g1g2 for g1 ∈ Gs, g2 ∈ Gcu. We have xn+1 = h1h2g1g2 and

the problem is with changing the order of h2 and g1. Let us write

h1h2g1g2 = h1g1(g
−1
1 h2g1h

−1
2 )h2g2 .

We shall proceed now in 2 steps:

1. Estimate ra(z), where z denotes the commutator z = g−1
1 h2g1h

−1
2 .

2. Estimate ra(ki), i = 1, 2 for the decomposition z = k1k2, k1 ∈ Gs,

k2 ∈ Gcu.

3. The commutator. First let us differentiate with respect to t the function

(curve) z(t) = xtyx
−1
t y−1 for any xt = exp tX, y = expY , X,Y ∈ G. At any

t0,

d/dt|t0(xtyx
−1
t y−1)(24)

= d/dt|0(xt)(xt0yx
−1
t0 y

−1) + xt0y(−d/dt|0(xt))(x
−1
t0 y

−1)

= X(z(t0)) − Adxt0
Ady(X)(z(t0))

= (X − ead t0X ead Y (X))(z(t0))

= −
∑

n1≥0,n2≥1

1

n1!n2!
[(t0X)n1 [Y n2X ]](z(t0)) ,

where Y n2 means the n2-th iterate of ad Y , similarly (t0X)n1 . We have used

the convention that multiplying a vector tangent to G by an element of G from

the right or left hand side means acting on the vector by the differential of the

action of this multiplication on G.

Therefore,

ra(z(1)) ≤

∫ 1

0

‖d/dt(z(t))‖adt ≤
∑

n1≥0,n2≥1

1

n1!n2!
Cn1+n2

a ‖X‖n1+1
a ‖Y ‖n2

a .

If we assume that ‖X‖a, ‖Y ‖a ≤ R for a constant R > 0, then we conclude with

(25) ra(z(1)) ≤ ReCaR(eCaR − 1) ≤ R(1 + 2CaR)2CaR ≤ 1/2

for a small enough (depending on R).
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4. The decomposition. Given X,Y ∈ G we have, by Campbell–Hausdorff

formula, Log (expX expY ) = X + Y + [X,Y ] + · · · . Hence,

‖Log (expX expY ) − (X + Y )‖a ≤ Ca · ‖X‖a · ‖Y ‖a ·W (Ca, ‖X‖a, ‖Y ‖a),

where W is a polynomial determined by the Campbell–Hausdorff formula and

the nilpotency of G. Taking absolute values of the standard coefficients we

can assume that all the coefficients of W are nonnegative. Assume that X is

orthogonal to Y in ωa and ‖X‖a, ‖Y ‖a ≤ 1. Then

‖Log (expX expY ) − (X + Y )‖a ≤ Ca max{‖X‖a, ‖Y ‖a}W (Ca, 1, 1)

<
1

2
max{‖X‖a, ‖Y ‖a}

for a small enough.

In particular, Log (expX expY ) maps the “sphere”

S := {X + Y : max{‖X‖a, ‖Y ‖a} = 1}

to G\{Z0} with degree 1 for every Z0 ∈ {‖Z‖a ≤ 1/2}, since Log (expX expY ) :

S → G \ {Z0} is homotopic to the identity. In conclusion

(26) {Log (expX expY ) : ‖X‖a ≤ 1, ‖Y ‖a ≤ 1} ⊃ {Z ∈ G : ‖Z‖a ≤ 1/2},

compare the end of Proof of Proposition 2.10.

5. Conclusion. Now we can conclude the proof of Lemma 2.7. Let λ : 0 <

λ < 1 and A > 0 satisfy

(27) ‖DΦ(e)n(X)‖ ≤ Aλn‖X‖ for all X ∈ Es and n ≥ 0 ,

compare (6) in Proposition 2.4. Define, for k the length of the descending

central tower Gj ,

(28) R := λkA
(µ(ǫ) + 1

1 − λ
+ ǫ1

)

.

Adjust a to this R so that (25) holds, and small enough that (26) holds. Observe

that (27) holds for the metric ωa with the same constant λ and A replaced by

kA. To see this decompose X =
∑

Xj with Xj ∈ Es
j and use the fact that each

Es ∩ Gj is invariant under DΦ(e), the construction of ωa and the assumption

that a ≤ 1.
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In xn = h1g1zh2g2, with the commutator z = k1k2 as above, write h1 =

an, k1 = bn, h2 = cn, z = dn. Recall that g1 = Φ(τ1(xn−1)). So we can write

τ1(xn) = anΦ(τ1(xn−1))bn.

Introducing this notation for all n we get

Φ(τ1(xn−1)) = Φ(an−1) · · ·Φ
n−1(a1)Φ

n(τ1(x0))Φ
n−1(b1) · · ·Φ(bn−1),

hence, knowing that ra(aj) ≤ r(aj) ≤ µ(ǫ) for all j, and assuming (the inductive

assumption) that ra(bj) ≤ 1 for all j = 1, . . . , n− 1, we can write

ra

(

Φ(τ1(xn−1)) ≤ Rn := kA

( n−1
∑

j=1

λjµ(ǫ) + λnra(τ1(x0))

)

+

n−1
∑

j=1

λj

)

≤ R .

Hence, using also ra(cn) ≤ R, which we achieve taking, say, A large enough, we

can apply (25) and (26) getting dn = expX expY for ‖X‖a, ‖Y ‖a ≤ 1. Hence

ra(bn) ≤ 1 for bn = expX , which finishes the inductive step.

We conclude with all ra(Φ(τ1(xn)) ≤ Rn+1 < R, hence ra(τ1(xn)) ≤ µ(ǫ) +

R+ 1, hence with r(τ1(xn)) ≤ ∆1 := Const · R with R defined by (28), where,

say, Const = 2λ−1 sup ‖ · ‖/‖ · ‖a = 2λ−1a−3k−1

. Finally ∆2 can be computed

from (10) in Lemma 2.7.

4. Final discussion. A proof via Lefschetz and Nielsen numbers

We begin this section with a further information and examples of solvmanifolds.

For m ≥ 3 and any ring R with unity we denote by Nm(R) the group of all

unipotent upper triangular m×m matrices with entries in R. The nilmanifolds

Nm(R)/Nm(Z) are called the Iwasawa manifolds. Also, Nn(C)/Nn(Z[ı]),

where Z[ı] is the ring of Gaussian integers, is a nilmanifold. The three di-

mensional Iwasawa nilmanifold N3(R)/N3(Z) is called baby-nil, and it is the

simplest nonabelian nilmanifold. Lie algebra of N3(R) is called the Heisenberg

Lie algebra.

We show now how to get the estimate (2), and (3), but under an additional

assumption, as a consequence of already known theorems.

We start with the following result of Hattori [11] for a solvmanifold of type

(R) that generalized a previous result of Nomizu [24] for nilmanifolds. We

recall that for a given Lie algebra G the Chevalley–Eilenberg complex (Λ∗G∗, δ)

associated with G consists of the exterior algebra Λ∗G∗ of the dual space G∗
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considered as a complex of vector spaces with the j-th, 0 ≤ j ≤ m gradation

equal to ∧jG∗ and the differential δ : ∧jG∗ → ∧j+1G∗ defined as

δ(X∗)(X1, . . . , Xj+1) :=
∑

1≤s≤t≤j+1

(−1)s+t−1X∗([Xs, Xt], X1, . . . , X̂s, . . . , X̂t, . . . , Xj+1) .

Theorem 4.1: Let (Λ∗G∗, δ) denote the Chevalley–Eilenberg complex associ-

ated to the Lie algebra G of a simply connected Lie group G of type (R). If

Γ ⊂ G is a discrete uniform subgroup, then H∗(G/Γ; R) ∼= H∗(Λ∗G∗, δ) .

Note that the Chevalley–Eilenberg complex can be identified with a subcom-

plex of de Rham complex consisting of, say, right invariant forms. This result

together with the Hopf formula (see [31]) leads to the following.

Proposition 4.2: Let f : G/Γ → G/Γ be a self map of a compact special

solvmanifold of type (R) and Φf : G → G be an endomorphism associated

to f . Then for the linear operator DΦf (e) we have the inclusion of spectra

σ(H∗(f)) ⊂ σ(∧DΦf (e)) and consequently the estimate sp (f) ≤ sp (∧DΦf (e)).

Moreover, for the Lefschetz number we have L(fn) = det(I − (DΦf (e))n) for

every n ∈ N.

Proof. By the Nomizu–Hattori theorem the spectral radius and Lefschetz num-

ber of f can be derived by use of the map DΦf (e)∗ of the Chevalley–Eilenberg

complex. Since DΦf (e) is a homomorphism of the Lie algebra, the linear sub-

spaces of co-boundaries, co-cycles are preserved by ∧DΦf (e)∗. Consequently,

the cohomology spaces can be identified with the factors of subspaces preserved

by ∧DΦf (e)∗. The inclusion, and consequently the inequality, follows from

the fact that the spectrum of an operator restricted to an invariant subspace

is a subset of the spectrum of entire operator and the same is true for the

factors. Finally we have L(fn) =
∑k=m

k=0 (−1)ktrHk(fn) =
∑k=m

k=0 (−1)ktr ,
∧k

(DΦf (e)n)∗ = det(I − (DΦf (e))n), where m is the dimension of G and the

second equality is a direct consequence of the Hopf formula and linear alge-

bra.

Now we show that the linear map DΦf (e) has the same spectrum as an

integer m×m-matrix Af assigned to a self-map f of compact nilmanifold M ,
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of dimension m, called the linearization of f and used in the Nielsen theory

approach (cf., [17, 13]).

To do this we need some more information on the nilmanifolds. Let G be a

nilpotent group and let

{e} = Gk ⊳ Gk−1 ⊳ Gk−2 ⊳ · · · ⊳ G1 ⊳ G0 = G

be the central tower of normal subgroupsGi := [G,Gi−1] = exp(Gi) correspond-

ing to the central tower (4) of the Lie algebra. Then for any uniform lattice Γ

in G, each group of a descending tower of normal (in Γ) discrete subgroups:

(29) {e} = Γk ⊳ Γk−1 ⊳ Γk−2 ⊳ · · · ⊳ Γ1 ⊳ Γ0 = Γ ,

Γi := Γ ∩Gi is a uniform lattice in the corresponding subgroup Gi of the cen-

tral tower (cf., [19] and [26]). Note that every homomorphism Φ : G → G

preserving Γ, induces factor maps φi, of the corresponding factor manifolds

Bi := (Gi/Γi)/(Gi+1/Γi+1) = (Gi/Gi+1)
/

(Γi/Γi+1). Since Gi/Gi+1 is abelian

and Γi ⊂ Gi is uniform, the manifold Bi is a torus of dimension mi. Conse-

quently φi is a torus endomorphism and thus represented by an mi×mi integer

matrix.

Definition 4.3 (cf. [17, 13]): Let M = G/Γ be a compact nilmanifold of di-

mension m, f : M → M be a continuous self-map, and Φf : G → G, an

endomorphism associated to f . We define an integer m×m matrix Af as the

direct sum

Af =

k−1
⊕

i=0

Ai ,

where each Ai is mi ×mi integer matrix of the endomorphism φi : Tmi → Tmi .

Note that Af is a homotopy invariant, and if M = Tm is a torus then Af

is equal to the matrix of the endomorphism f# : Zm → Zm induced on the

fundamental group.

Proposition 4.4: Let f : M → M be a map of a nilmanifold. Then we have

σ(DΦf (e))= σ(Af ). Consequently sp (DΦf (e))= sp (Af ) and sp (
∧

DΦf (e))=

sp (
∧

Af ).

Proof. To shorten notation put D := DΦf (e). If M = Tm, then G = Rm and

Φ is a linear map preserving a uniform lattice Γ, we can identify G and its



372 W. MARZANTOWICZ AND F. PRZYTYCKI Isr. J. Math.

commutative algebra G, and Af is the matrix of D in the basis of G formed by

generators of Γ.

In the general case note that D preserves the central tower of ideals (4) as

an endomorphism of the Lie algebra G. Note that the quotient Lie algebra of

G/Gk−1 is equal to G/Gk−1. Consider in G the linear space basis, formed by

generators of Γk−1 in Gk−1 identified with Gk−1 = R
mk−1 and preimages in the

factorization G → G/Gk−1 of any basis in G/Gk−1. Then the matrix of D has

the form

D =

[

Dk−1 ∗

0 D̃k−1

]

,

where Dk−1 = D|Gk−1
and D̃k−1 = DΦ̃f (ek−1), the factor of D to G/Gk−1, the

differential at the unit element of G/Gk−1 for Φ̃f the factor of Φf to G/Gk−1.

Consequently for the characteristic polynomials we have that χD(t) =

χDk−1
(t)χD̃k−1

(t), and the statement follows by the induction argument.

Proof of Theorem 1.5. First note that if f : M → M is a map of a compact

special solvmanifold of type (R), then N(f) = 0 is equivalent to the fact that f

is homotopic to fixed point free map. The implication in one direction follows

from the property of Nielsen number. Conversely, if f : M → M is a map of a

compact manifold and dimM ≥ 3, then the Wecken theorem says thatN(f) = 0

implies that f is deformable to a fixed point free map (see [14] for a modern

proof of the Wecken theorem). If M is a special compact solvmanifold of type

(R) of dim ≤ 2 it must be the torus and the statement holds by elementary

analysis (cf., [13]).

Definition 4.5: The asymptotic Nielsen number is N∞(f) := lim supn
n
√

N(fn),

where N(f) is the Nielsen number of f (cf., [14]).

In [12] Ivanov showed that

(30) logN∞(f) ≤ h(f),

for every continuous self-map f of a compact manifold. By the Anosov theorem

(cf., [1], [4]) we have N(f) = |L(f)| for a map of a compact nilmanifold, or a

compact NR-solvmanifold (cf., [17]). From this and Proposition 4.2 it follows

that N(fn) = |L(fn)| = | det(I −DΦn)|, for DΦ := DΦ(e). On the other hand

det(I − DΦn) = 1 −
∑m

j=1 λ
n
j +

∑

j1<j2

λn
j1
λn

j2
+ · · · + (−1)nλn

1λ
n
2 · · ·λn

m, where
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{λ1, . . . , λm} are all the eigenvalues of DΦ, counted with multiplicities. This

shows that

logN∞(f)

= lim sup
n→∞

1

n
log

(∣

∣

∣
1−

m
∑

1

λn
j +

∑

j1<j2

λn
j1λ

n
j2 + · · · + (−1)nλn

1λ
n
2 · · ·λn

m

∣

∣

∣

)

=











−∞ if 1 ∈ σ(DΦ(e)),

log
(

∏

|λj |>1

|λj |
)

=
∑

|λj |>1

log |λj | otherwise,

since we have assumed that {i : |λi| > 1} 6= ∅ (see (1)). To prove the latter case

equality note that for Dc := DΦ(e)|Ec the restriction of DΦ(e) to the central

subspace, where |λi| = 1, we have the estimate lim supn→∞ | det(I−(Dc)n)| > 0.

To estimate this limsup consider for example the subsequence nk = 1 + kW ,

whereW =
∏

i pi for positive integers pi such that λpi

i = 1 for all λi ∈ σ(Dc). By

the unique ergodicity of irrational rotations of the circle, for each λ = e2πitλ ∈

σ(Dc) with tλ irrational, the density of the set of k’s such that λ1+kW hits the

arc α of the length 2πA containing 1 is equal to A. Therefore, if there are T

irrational tλs, the density of the set of the integers k so that all λ1+kW omit α

is at least 1 − AT which is positive if A < 1/T . If T = 0, then λ1+kW = λ, so

λ1+kW have arguments bounded away from 0 for all λ = λi and k.

Consequently we get logN∞(f) = log sp (∧DΦf (e)), see (1), provided 1 /∈

σ(DΦf (e)). Theorem 2.1, the rigidity property, and the inequality (30) give the

statement of Theorem 1.5.

It is natural to ask whether the tools used for the proof of Theorem 1.5 work

in a more general situation. We discuss it below.

Remark 4.6 (Behavior of the asymptotic Nielsen number): Every compact spe-

cial solvmanifold M = G/Γ can be represented (in many ways, in general,

depending on a group Ñ ⊂ N , where N is the nilradical) as a fibration MÑ ⊂

M
p
→Tn, with the fiber MÑ is a nilmanifold and the base Tn being the r-

dimensional torus. Each such fibration is called the Mostow fibration (cf., [8]

for the construction and more details). Due to the McCord theorem (see [17]

for references) every map f : M → M can be deformed to a fiber preserving

map f = (fMÑ
, fT) of this fibration provided f#(Γ∩ Ñ) ⊂ (Γ∩ Ñ), for the map

induced on fundamental group. The later condition is satisfied if as a nilpotent
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group Ñ we take [G,G]. Then one can define the linearization matrix Af as

AfM
Ñ

⊕ AfT
. But only for a map of the so-called NR-solvmanifold (a class a

little bit larger than exponential manifolds) the equality det(I − Af ) = L(f)

and Anosov theorem hold (cf., [17]). Consequently, only for these solvmanifolds

we get the estimate of N∞(f) by sp (
∧

(Af )) by already known facts.

Remark 4.7 (Inequality sp (f) ≤ sp (∧(Af ))): For the proof of this inequality we

used the rigidity property replacing f by φf . On the other hand f : M → M

is always, up to homotopy, a fiber map of the Mostow fibration. Using the

Serre spectral sequence convergent to H∗(M ; R) one can show that sp (f) ≤

sp (Ep,q
2 (f)), because at each step passing from E∗

r (M) to E∗
r+1(M), r ≥ 2, and

then from E∗
r0

(M) = E∗
∞(M) to H∗(M) we either pass to a subspace or to a

factor space. To get directly sp (Ep,q
2 (f)) = sp (fMN

)·sp (fT), we need to assume

that the fibration is orientable, i.e. that the system of local coefficients of this

fibration is constant (cf., [31]). Indeed Ep,q
2 = Hp(T) ⊗Hq(MN ), which yields

the discussed inequality. Unfortunately the Mostow fibration is not orientable

in general.

Summing up, the statement of Theorem 1.5 still holds for a map f of a

compact special NR-solvmanifold G/Γ provided f is homotopic to the factor

of an endomorphism Φ of G, satisfying 1 /∈ σ(DΦ(e)).

Remark 4.8: In [21] A. Manning proposed for any M the following proof that

(31) h(f) ≥ log sp ∧(f) ,

where sp∧(f) is computed forH∧(f) which isH∗(f) restricted to the subalgebra

H∧(M ; R) ⊂ H∗(M ; R) generated by the first cohomology spaceH1(M ; R). Let

Tk be the torus of dimension k being the dimension of H1(M ; R). Then there

exists a mapping q : M → Tk such that q ◦ f is homotopic to φ ◦ q, H1(q) is

an isomorphism on the first real (co)homology space and φ is an endomorphism

of Tk inducing H1(f). Then there exists θ : M̃ → Eu′

, such that θ ◦ f̃ = Φθ

(compare (18)) where M̃ is the universal cover of M , Φ is the endomorphism

of R
k whose factor is φ and Eu′

is the linear Φ-invariant subspace of R
k, of

dimension u′, contained in the unstable subspace Eu corresponding to all the

eigenvalues of Φ of modulus larger than 1, of maximal growth of volume under

Φn, representing an element ω in the cohomologies whose g∗-image in H∗(M ; R)

is non-zero.
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Unfortunately it is not clear (as pointed out by D. Fried and M. Gromov)

that there exists a k-simplex in M , whose lift to M̃ and the image by θ has

nonzero measure in Eu′

. See, in particular, [7, §8] and [9, Appendix 5].

Manning’s proof of (31) is correct if M = G/Γ is a nilmanifold, since then

q : M → G/G1

/

Γ/Γ1 = Tk, as G1 = [G,G] is the commutator of G, and θ is

“onto” by the same arguments as in Proof of Proposition 2.10.

Nevertheless, even if the above statement (31) is true it does not lead to a

proof of Theorem 1.3 as follows from the following observation.

Proposition 4.9: Let H∧(M) be the subalgebra of H∗(M) generated (mul-

tiplicatively) by H1(M). For a compact nilmanifold H∧(M) = H∗(M) if and

only if M is a torus.

Proof. Since the cohomology algebra H∗(T) is the exterior power algebra of

H1(T), one implication is obvious.

Suppose now that M = G/Γ is a nonabelian compact nilmanifold of di-

mension m ≥ 3, i.e., Γ = π1(M) is non-abelian nilpotent group. The ex-

act sequence of abelianization e ⊂ [Γ,Γ] ⊂ Γ → Γ/[Γ,Γ] ∼= Zk leads to

a fibration of nilmanifolds F
i
⊂M

p
−→Tk corresponding to the homomorphism

of fundamental groups. Here k ≥ 1 and F is a compact nilmanifold of di-

mension b = m − k ≥ 1. The Hurewicz theorem says that for every CW -

complex H1(X ; Z) = π1(X)/[π1(X), π1(X)]. Applying it to X = M we get

H1(M ; Z) = H1(T
k; Z) = Zk. Since M and Tk are K(π, 1)-spaces, this isomor-

phism is induced by p.

It means that H1(p) : H1(M ; Z) → H1(T
k; Z) = Z

k is an isomorphism, and

so is H1(p) : H1(M ; R) → H1(T
k; R). Consequently the dual map H1(p) :

H1(Tk; R) → H1(M ; R) is an isomorphism. This shows that H∧(M ; R) is

contained in the algebra generated by p∗(H∗(Tk; R). But the latter subalgebra

vanishes in all dimensions > k, which shows that H∧(M ; R) is then a proper

subset of H∗(M ; R).

Remark 4.10: Now we give an example that Theorem 1.3 gives sharper estimate

that inequality (31). Let us take G the baby-nil M = N3(R)/N3(Z), which is
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generated by the matrices

x =







1 1 0

0 1 0

0 0 1






, y =







1 0 0

0 1 1

0 0 1






, z =







1 0 1

0 1 0

0 0 1






,

with relations xz = zx, yz = zy, xyx−1y−1 = z. The same matrices generate

N3(Z). It is easy to verify that the mapping Φ(x) = xk1 , Φ(y) = yk2 , Φ(z) =

zk3 , ki ∈ Z, extends to an endomorphism preserving Γ, provided k1 · k2 = k3.

In the coordinates X = exp−1(x), Y = exp−1(y), Z = exp−1(z) the matrix

of DΦ(e) is diagonal, with the entries ki on the diagonal. Using the argu-

ment of the proof of Proposition 4.9 we get that sp (H∧(φ)) = sp (φ̃), where

φ̃ : T2 → T2 is the induced by Φ self-map of the base (G/Γ)
/

([G,G]/[G,G]∩Γ),

where [G,G] = Z(G) = span{z}, (subspace generated by z) of the correspond-

ing fibration. Consequently, sp (H∧(φ)) = |k1k2| < (k1k2)
2 = sp (∧DΦ(e)) if

|k1 k2| > 1. Note that from Theorem 4.13 it follows that h(φ) = (k1k2)
2.

In [30, p. 762] S. Smale provided examples of Anosov diffeomorphisms φ of

6-dimensional (G ×G)/Γ, Γ a uniform lattice, being factors of automorphisms

Φ of G×G for G = N3(R), also satisfying sp (H∧(φ)) < sp (∧DΦ(e)).

Finally, we would like to discuss briefly a relation between the topological

entropy and periodic points for a nilmanifold map. The claim that h(f) > 0

implies a nonempty set of periodic points, or the set of minimal periods Per(f)

of f is false in view of the following standard examples. Take M = T1 × T1 =

T
2 = R

2/Z2 and the product map f = (f1, f2), f : T
2 → T

2 where f1 is of degree

> 1; mapping of the circle T1 and f2 has no periodic points. (There is even

an example of a minimal homeomorphism of T2, hence without periodic points,

with h(f) > 0, by M. Rees. On the other hand, for f of class C1+ǫ, this cannot

happen, see [10].) Conversely, for the map of the torus f(x, y) = (x, x + y)

mod 1 we have Per(f) = N but h(f) = 0.

It seems to be more natural to compare the behavior of the entropy with the

set of so called homotopy minimal periods (see [13]).

Definition 4.11: Let f : X → X be a map of a topological space and Per(f) its

set of minimal periods. We define

HPer(f) =:
⋂

g∼f

Per(g) ⊂ Per(f)
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where the intersection is taken over all g homotopic to f , i.e., a natural number

belongs to HPer(f) if and only if its a minimal period of all maps homotopic to

f .

Corollary 4.12: Let f : M → M be a map of compact nilmanifold. If

HPer(f) is infinite then h(f) > 0.

Proof. From the result of [13] it directly follows that for a nilmanifold map the

set HPer(f) is infinite if and only if 1 /∈ σ(Af ) and sp (Af ) > 1. By Theorem 4.4,

sp (∧DΦ(e)) = sp (
∧

Af ). Then the claim follows either directly from Theorem

2.1, or from the Ivanov inequality (30), since sp (
∧

A) ≥ sp (A) > 1.

We end showing the following

Theorem 4.13: Let M = G/Γ be a quotient of a connected Lie group by a

uniform lattice Γ and φ : M → M be the factor map of a preserving Γ endo-

morphism Φ : G → G. Then h(φ) = log sp (
∧

DΦ(e)). If M is a nilmanifold,

then φ minimizes the entropy in its homotopy class.

Proof. It follows from [27], [18] or [16] (the latter in the case of diffeomorphism),

see also [25] , that h(f) ≤ lim supn→∞ n−1 supx∈M log ‖
∧

(Df(x))‖ for every

C1-mapping f : M → M of a compact manifold M . In our case ‖
∧

Dφ(x)‖ =

‖
∧

DΦ(e)‖ for every x ∈M = G/Γ. Hence, by the definition of spectral radius,

h(φ) ≤ log sp (
∧

DΦ(e)).

The opposite inequality can be proved as Theorem 2.2 but much simpler.

Just choose separated sets Sn for Φ in a ball in Gu of origin at e. (In fact, we

can consider Sn directly in G/Γ.)

Finally, since by Theorem 2.2, h(f) ≥ log sp (
∧

DΦf (e)) in the nilmanifold

case, h(φ) minimizes h(f) in the homotopy class.

Added in proof: The results have been recently extended by the authors to

infra-nilmanifolds in particular in “Estimates of the topological entropy from

below for continuous self-maps on some compact manifolds” Discrete and Con-

tinuous Dynamical Systems, 21.2 (2008).
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tronomiques et Physiques 25 (1977), 573–574.

[23] M. Misiurewicz and F. Przytycki, Entropy conjecture for tori, Bulletin de l’Académie

Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques
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